

Features

- · RoHS lead-free-solder and lead-solder-exempted products are available.
- Extremely wide input voltage ranges up to 150 VDC
- 4 outputs up to 60 V
- 1200 to 1800 VAC i/o electric strength test
- Electrical isolation also between outputs
- Immunity to IEC/EN 61000-4-2,-3,-4,-5, -6
- Programmable input undervoltage lockout
- Shut down/inhibit input
- · Adjustable output voltages with flexible load distribution
- · Frequency synchronization
- · Outputs no-load, overload, and short-circuit proof
- Operating ambient temperature from −40 to 85 °C
- Thermal protection
- 3" x 2.5" case with 10.5 mm profile or 8.9 mm open frame
- · Basic insulation
- Flexible output possibilities between 5 V and 60 V

Safety according to IEC/EN 60950-1 and UL 60950-1


```
CE
```

Description

The IMX35 Series of board-mountable, 35 Watt DC-DC converters has been designed according to industry requirements and standards. The converters are particularly suitable for use in mobile or stationary applications in transport, railways, industry, or telecommunication, where variable input voltages or high transient voltages are prevalent.

Covering a total input voltage range from 9 V up to 150 V with 4 different models. The units are available with up to quadruple outputs (electrically isolated) from 5 V to 60 V, externally adjustable and with flexible load distribution. A shut down input allows remote converter on/off. Features include consistently high efficiency over the entire input voltage range, high reliability, and excellent dynamic response to load and line changes.

The converters are designed and built according to the international safety standards IEC/EN/UL 60950, and

Electrical Input Data4 Electrical Output Data6 Auxiliary Functions9

approved by TÜV, UL, and cUL. The IMX35 models provide basic insulation.

The circuit is comprised of 2 planar magnetics devices, and all components are automatically assembled and securly soldered onto a single PCB without any wire connection. Magnetic feedback ensures maximum reliability and repeatability in the control loop over all operating conditions. Careful considerations of possible thermal stresses ensure the absence of hot spots providing long life in environments, where temperature cycles are present. The thermal design without using any potting material allows operation at full load up to an ambient temperature of 71 °C in free air and operation up to 110 °C with airflow. For extremely high vibration environments the case has holes for screw mounting.

Table of Contents	Page
Description	1
Model Selection	2
Functional Description	3

	0
Electromagnetic Compatibility (EMC)	11
Immunity to Environmental Conditions	12
Mechanical Data	13
Safety and Installation Instructions	14
Options	15
EC Declaration of Conformity	16

Page

Page

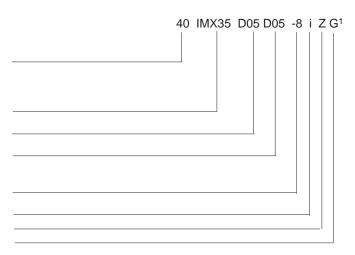
Model Selection

Table 1: Model Selection

Out	put 1	Outp	out 2	Outp	out 3	Outp	out 4	Input voltage	Eff.	Model	Trim ²	Opt. ³
V _{o nom} [VDC]	I _{o nom} [A]	V _{i min} to V _{i max} [VDC]	η¹ [%]									
5	1.35	5	1.35	5	1.35	5	1.35	9 to 36	86	20IMX35D05D05-8	primary	i
5	1.4	5	1.4	5	1.4	5	1.4	18 to 75	87	40IMX35D05D05-8		Z
5	1.4	5	1.4	5	1.4	5	1.4	40 to 121	86	70IMX35D05D05-8		G
5	1.4	5	1.4	5	1.4	5	1.4	60 to 150	86	110IMX35D05D05-8		
12	0.65	12	0.65	12	0.65	12	0.65	9 to 36	86	20IMX35D12D12-8	primary	
12	0.7	12	0.7	12	0.7	12	0.7	18 to 75	88	40IMX35D12D12-8		
12	0.7	12	0.7	12	0.7	12	0.7	40 to 121	88	70IMX35D12D12-8		
12	0.7	12	0.7	12	0.7	12	0.7	60 to 150	88	110IMX35D12D12-8		
15	0.55	15	0.55	15	0.55	15	0.55	9 to 36	88	20IMX35D15D15-8	primary	
15	0.6	15	0.6	15	0.6	15	0.6	18 to 75	89	40IMX35D15D15-8		
15	0.6	15	0.6	15	0.6	15	0.6	40 to 121	88	70IMX35D15D15-8		
15	0.6	15	0.6	15	0.6	15	0.6	60 to 150	88	110IMX35D15D15-8		
5	1.35	12	0.65	12	0.65	5	1.35	9 to 36	88	20IMX35D05D12-8	primary	
5	1.4	12	0.7	12	0.7	5	1.4	18 to 75	89	40IMX35D05D12-8		
5	1.4	12	0.7	12	0.7	5	1.4	40 to 121	88	70IMX35D05D12-8		
5	1.4	12	0.7	12	0.7	5	1.4	60 to 150	88	110IMX35D05D12-8		
5	1.35	15	0.55	15	0.55	5	1.35	9 to 36	88	20IMX35D05D15-8	primary	
5	1.4	15	0.6	15	0.6	5	1.4	18 to 75	89	40IMX35D05D15-8	,,	
5	1.4	15	0.6	15	0.6	5	1.4	40 to 121	88	70IMX35D05D15-8		
5	1.4	15	0.6	15	0.6	5	1.4	60 to 150	88	110IMX35D05D15-8		

¹ Typ. efficiency at $T_A = 25 \text{ °C}$, $V_{o \text{ nom}}$, $I_{o \text{ nom}}$ ² The Trim input (pin 5) on the primary side influences all outputs simultaneously on equal-voltage models (e.g., D12D12); for unequal voltages (e.g., D05D12), Trim1 influences only the first power train Vo1/Vo4.

³ For minimum quantity and lead times contact Power-One.


Part Number Description

Input voltag	e range Vi
1	9 to 36 VDC 20
	18 to 75 VDC 40
	40 to 121 VDC
	60 to 150 VDC 110
Series	IMX35
Outputs 1 a	nd 4 of quad types D05, D12, D15
Outputs 2 a	nd 3 of quad types D05, D12, D15
Operating a	mbient temperature range
	$T_{\rm A} = -40$ to 85 °C (110 °C)8
Options:	Inhibiti
	Open frame Z
	RoHS compliant for all six substances G ¹

¹ G is allways placed at the end of the part number.

Product Marking

Converters without option Z are marked with basic type designation, input and output voltages and currents, applicable safety approval and recognition marks, Power-One patent nos., company logo, date code, and serial no.

Functional Description

The IMX35 converters are comprised of 2 feedback-controlled interleaved-switching flyback power trains using current mode PWM (pulse width modulation).

Each converter consists of 4 electrically isolated outputs deriving from 2 power trains. Vo1, Vo4 derive from the first power train and Vo2, Vo3 from the second one. Thus each pair of outputs is independent from the other one.

Voltage regulation for each pair of outputs is achieved with passive transformer feedback from the main transformer of the power train. Each pair of outputs has the same output voltage (i.e. D05, D12, etc.). If both power trains have the same output voltage (e.g., D12D12), all outputs may be simultaneously adjusted by the Trim input (pin 5). In case of different output voltages (e.g., D05D15), the Trim1 input influences only Vo1 and Vo4.

Current limitation is provided by the primary circuit for each power train and limits the possible output power for each pair of outputs. In the case of an overload on either of the power trains, which causes the output voltage to fall less than typically 60% of $V_{0 \text{ nom}}$, the entire converter will shut down and automatically restart in short intervals (hiccup mode).

The incorporated overtemperature protection shuts down the converter in excessive overload conditions with automatic restart.

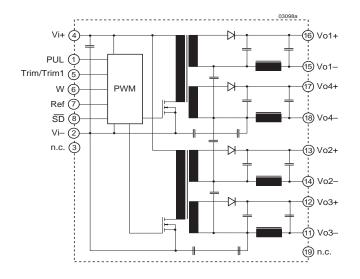


Fig. 1 Block diagram of quad output models

Electrical Input Data

General conditions:

 $T_A = 25$ °C, shut down and Trim pin left open-circuit (not connected), unless specified.

Table 2: Input Data

Input	nput				01MX			401M)	(Unit
Charac	Characteristics		Conditions	min	typ	max	min	typ	max	
Vi	Input voltage range ¹ $T_{A \min}$ to $T_{A \max}$ 9 ² 36		18 ² 75		75	VDC				
Vinom	Nominal input	voltage	$I_{\rm o} = 0$ to $I_{\rm o nom}$		20		40			
V _{i sur}	Repetitive surg	je voltage	Abs. max input (3 s)			40			100	
t _{start up}	Converter	Switch on	Worst case condition at		0.25	0.5		0.25	0.5	s
	start-up time 2	SD high	V _{i min} and full load			0.1			0.1	
t _{rise}	Rise time ³		V _{i nom} resist load		3			3		ms
		I _{o nom} capac. load		6	12		6	12		
l _{i o}	No load input current		$I_{\rm o} = 0, V_{\rm i \ min}$ to $V_{\rm i \ max}$			70			50	mA
<i>l</i> irr	Reflected ripple current		$I_{\rm o} = 0$ to $I_{\rm o nom}$			30			30	mA _{pp}
<i>l</i> inr p	Inrush peak cu	irrent ⁴	V _i = V _{i nom}	8		9		9	A	
Ci	Input capacitar	nce	for surge calculation	2		1.3			μF	
V _{SD}	Shut down volt	age	Converter shut down	-10 to 0.7		_	-10 to C).7	VDC	
		Converter operating	open circuit or 2 to 20		open circuit or 2 to 20		r 2 to 20			
R_{SD}	Shut down input resistance		For current calculations	approx. 10		approx. 10		10	kΩ	
/ _{SD}	Input current at shut down		V _{i min} to V _{i max}	12		6		mA		
f _s	Switching frequ	uency	$V_{i \min}$ to $V_{i \max}$, $I_0 = 0$ to $I_{0 \min}$	approx. 220		ap	prox. 2	220	kHz	

Input	nput			701MX				110IM	х	Unit	
Characteristics			Conditions	min typ		max	min	typ	max	1	
Vi	Input voltage ra	ge range ¹ $T_{A \min}$ to $T_{A \max}$ 40 ² 121		121	60 ² 150		VDC				
Vinom	Nominal input	voltage	$I_{\rm o} = 0$ to $I_{\rm o nom}$		70			110			
V _{i sur}	Repetitive surg	e voltage	Abs. max input (3 s)			150			170	1	
tstart up	Converter	Switch on	Worst case condition at		0.25	0.5		0.25	0.5	S	
	start-up time 2	SD high	V _{i min} and full load			0.1			0.1		
t _{rise}	Rise time ³		V _{i nom} resist load		3			3		ms	
			I _{o nom} capac. load		6	12		6	12	-	
l _{i o}	No load input current		$I_{\rm o} = 0, V_{\rm i min}$ to $V_{\rm i max}$			30			20	mA	
<i>I</i> _{irr}	Reflected ripple current		$I_{\rm o} = 0$ to $I_{\rm o nom}$			30			30	mA _{pp}	
l _{inr p}	Inrush peak cu	rrent ⁴	V _i = V _{i nom}	7		7		A			
Ci	Input capacitar	nce	for surge calculation	0.5		0.5			μF		
V _{SD}	Shut down volt	age	Converter shut down	-10 to 0.7		-10 to 0.7		VDC			
			Converter operating	open circuit or 2 to 20		open circuit or 2 to 20		1			
R _{SD}	Shut down input resistance		For current calculations	approx. 10		approx. 10		kΩ			
ISD	Input current a	t shut down	V _{i min} to V _{i max}	3.5		4		4	mA		
f _s	Switching frequ	uency	$V_{i \text{ min}}$ to $V_{i \text{ max}}$, $I_0 = 0$ to $I_{0 \text{ nom}}$	approx. 220		approx. 220		kHz			

¹ V_{i min} will not be as stated if V_o is increased above V_{o nom} by use of Trim input. If the output voltage is set to a higher value, V_{i min} will be proportionately increased.

² Input undervoltage lockout at typ. 85% of $V_{i min}$.

³ Measured with resistive and max. admissible capacitive load.

⁴ Source impedance according to ETS 300132-2, version 4.3.

⁵ Measured with a lead length of 0.1 m, leads twisted.

Inrush Current

The inrush current has been kept as low as possible by choosing a very small input capacitance. A series resistor may be installed in the input line in order to further reduce this current.

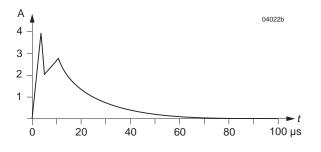


Fig. 2

Typical inrush current at $V_{i nom}$, $P_{o nom}$ versus time (40IMX35). Source impedance according to ETS 300132-2 at $V_{i nom}$.

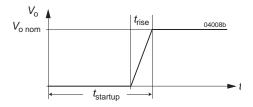


Fig. 3 Converter start-up and rise time

Reverse Polarity Protection

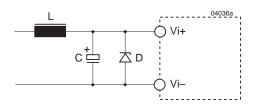
The built-in suppressor diode also provides for reverse polarity protection at the input by conducting current in the reverse direction. An external fuse is required to limit this current.

Table 3: Recommended external fuses in the non-earthed input line

Converter model	Fuse type
20IMX35	F8.0A
40IMX35	F4.0A
70IMX35	F2.0A
110IMX35	F1.5A

Input Transient Voltage Protection

A built-in suppressor diode provides effective protection against input transients, which may be generated for example by short-circuits across the input lines, where the network inductance may cause high energy pulses.


Table 4: Built-in transient v	voltage suppressor
-------------------------------	--------------------

Model	Breakdown voltage V _{Br nom} [V]	Peak power at 1 ms <i>P</i> _p [W]	Peak pulse current I _{pp} [A]
20IMX35	39	1500	22
40IMX35	100	1500	9.7
70IMX35	151	600	2.9
110IMX35	176	600	2.5

For very high energy transients as for example to achieve IEC/EN 61000-4-5 compliance (as per table *Electromagnetic Immunity*) an external inductor and capacitor are required. The components should have similar characteristics as listed in table below.

Table 5:	Components for external circuitry for IEC/EN
	61000-4-5, level 2

Model	Inductor (L)	Capacitor (C)	Diode (D)
20IMX35	22 μH/5 A	470 μF/40 V	1.5 k E47A
40IMX35	68 μH/2.7 A	2 x 100 μF/100 V	-
70IMX35	100 μH/1 A	2 x 82 μF/200 V	-
110IMX35	150 μH/0.8 A	2 x 82 μF/200 V	-

Fig. 4

Example for external circuitry to comply with IEC/EN 61000-4-5; the diode D is only necessary for 20IMX35 models.

Electrical Output Data

General conditions:

- $-T_{\rm A} = 25$ °C, unless $T_{\rm C}$ is specified
- Shutdown pin left open-circuit (not connected)

- Trim not connected

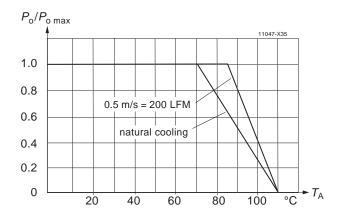
Outpu	utput				2 x 5	V	2 >	(12 V	2 :	c 15 V	Unit
Chara	cteristics	Conditions		min	typ	max	min t	yp max	min t	/p max	-
V _{o1} V _{o2}	Output volta	ge	$V_{i nom}$ $I_o = 0.5 I_{o nom}$	4.95 4.94		5.05 5.06	11.88 11.86	12.12 12.14	14.85 14.82	15.15 15.18	VDC
I _{o nom}	Output curre	ent 20IMX	V _{i min} to V _{i max}	2	x 1.3	5	2 x	0.65	2 x	0.55	A
		40IMX		:	2 x 1.4	1	2 x	0.70	2 x	0.60	
		70IMX			2 x 1.4	1	2 x	0.70	2 x	0.60	
		110IMX		:	2 x 1.4	1	2 x	0.70	2 x	0.60	
I _{oL}	Current limit	¹ 20IMX	$V_{\rm i nom}, T_{\rm C} = 25 \ ^{\circ}{\rm C}$		3.5			1.8	1	.5	
		40IMX	$V_{\rm o} = 93\% V_{\rm o nom}$		3.8		2	2.0	1	.7	
		70IMX			3.8		2	2.0	1	.7	1
		110IMX			3.8		2	2.0	1	.7	
$\Delta V_{\rm o}$	Line regulati	on	$V_{\rm imin}$ to $V_{\rm imax}$, $I_{\rm onom}$			±1		±1		±1	%
ΔV _{ol}	Load regula	tion	$V_{i \text{ nom}}$ $I_o = (0.1 \text{ to } 1) I_o \text{ nom}$			±3		±3		±3	-
V _{01/2}	Output volta	ge noise	$V_{\rm imin}$ to $V_{\rm imax}$ ²			80		120		150	mV _{pp}
			$I_{\rm o} = I_{\rm o nom}$ 3			40		60		70	
V _{o L}	Output over	voltage limit. 4	Min. load 1%	115		130	115	130	115	130	%
C _{o ext}	Admissible of	capacitive load				4000		470		330	μF
V _{od}	Dynamic	Voltage deviat.	V _{i nom}			±250		±480		±520	mV
t _d	load regulation	Recovery time	$I_{\rm o nom} \leftrightarrow 1/2 I_{\rm o nom}$			0.75		0.75		0.75	ms
α_{Vo}	Temperature $\Delta V_0 / \Delta T_C$	e coefficient	$V_{i \text{ min}}$ to $V_{i \text{ max}}$ $I_{o} = (0.1 \text{ to } 1) I_{o \text{ nom}}$			±0.02		±0.02		±0.02	%/K

¹ Both outputs connected in parallel. The current limit is primary side controlled. In the event of a sustained overload condition the thermal protection may cause the converter to shut down (restart on cool-down).

 2 BW = 20 MHz, measured with an external capacitor of 1 μ F across each output pin.

³ Measured with a probe according to EN 61204

⁴ The overvoltage protection is via a primary side second regulation loop, not tracking with Trim control.



Thermal Considerations

If a converter, mounted on a PCB, is located in free, quasistationary air (convection cooling) at the indicated maximum ambient temperature T_A max (see table *Temperature specifications*) and is operated at its nominal input voltage and output power, the case temperature T_C measured at the measuring point of case temperature (see *Mechanical Data*) will approach the indicated value T_C max after the warm-up phase. However, the relationship between T_A and T_C depends heavily on the conditions of operation and integration into a system. The thermal conditions are influenced by input voltage, output current, airflow, temperature of surrounding components and the surfaces and properties of the printed circuit board. T_A max is therefore only an indicative value, and under practical operating conditions, the ambient temperature T_A may be higher or lower than this value.

Caution: The case temperature $T_{\rm C}$ measured at the measuring point of case temperature $T_{\rm C}$ (see *Mechanical Data*) may under no circumstances exceed the specified maximum value. The installer must ensure that under all operating conditions $T_{\rm C}$ remains within the limits stated in the table *Temperature specifications*.

The converters provide the specified output power with free air convection cooling. In the upper temperature range the output power derating below should be observed.

Maximum allowed output power versus ambient temperature.

Overtemperature Protection

The converter is protected against possible overheating by means of an internal temperature monitoring circuit. It shuts down the converter above the internal temperature limit and attempts to automatically restart. This feature prevents excessive internal temperature building up which could occur under heavy overload conditions.

Short Circuit Behavior

The current limit characteristic shuts down the converter whenever a short circuit is applied to an output. It acts selfprotecting and automatically recovers after removal of the overload condition (hiccup mode).

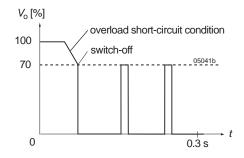


Fig. 6 Overload switch off (hiccup mode), typical values.

Connection in Series

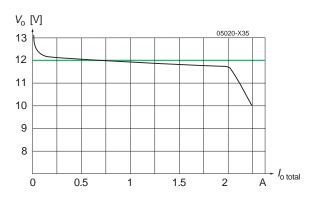
The outputs of one or several double output power trains may be connected in series without any precautions.

Connection in Parallel

Several outputs of the same converter with equal output voltage (e.g., $5 \vee / 5 \vee$) can be connected in parallel and will share their output currents almost equally.

If outputs from the same converter are being paralleled together, it is recommended that outputs from the same power trains are connected together first.

Note: A separate application note is available for uses when all outputs are paralleled together.


Parallel operation of several converters with the same output voltage may cause start-up problems at initial start-up. This is only advisable in applications where one converter is able to deliver the full load current as is required in true redundant systems. It is recommended not to parallel more than three units at full load.

Typical Performance Curves

General conditions:

- $-T_A = 25$ °C, unless T_C is specified.
- Shut down and Trim pin left open-circuit.

 V_0 versus I_0 (typ.) of double-output power trains, with both outputs in parallel (e.g., $V_{01/4}$ of a 40IMX35D12D12)

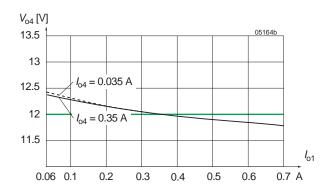
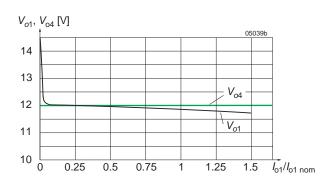
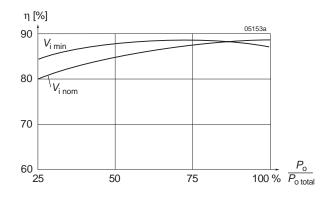


Fig. 8

Cross load regulation (typ.) on power train 1. V_{04} versus I_{01}




Fig. 9

Flexible load distribution (typ.) on power train 1 of a 40IMX35D12D12-8: V_{o1} versus I_{o1} , $I_{o4} = 0.5 I_{o4 nom}$

Fig. 10

Efficiency versus input voltage and load. Typical values (40IMX35D12D12-8)

Efficiency versus input voltage and load. Typical values (20IMX35D12D12-8)

Auxiliary Functions

Adjustable Output Voltage

As a standard feature, the IMX35 offer adjustable output voltages in the range of 85 to 105% of $V_{o nom}$. Fig. 12 shows the schematic diagram for the adjustment of quad-output models.

All models with equal output voltages have the trim function connected to pin 5 referenced to the primary side, influencing all outputs simultaneously. However, the Trim1 input of models with different output voltage on the power trains influences only the first power train.

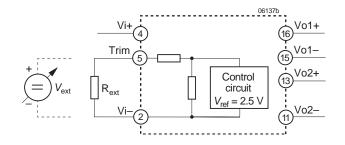


Fig. 12 Output voltage control by means of the Trim input

Adjustment by means of an external resistor R_{ext} :

Adjustment of the output voltage by means of an external resistor R_{ext} is possible within the range of 100 to 105% of $V_{\text{o nom}}$. R_{ext} should be connected between Trim (pin 5) and Vi–(pin 2). The following table indicates suitable resistor values for typical output voltages under nominal conditions ($V_{\text{i nom}}$, $I_{\text{o}} = 0.5 I_{\text{o nom}}$).

Note: Connection of R_{ext} to Vi+ may damage the converter.

Table 7: R_{ext1} for $V_o > V_{o nom}$; approximate values ($V_{i nom}$, $I_o = 0.5 I_{o nom}$)

V _o [% V _{o nom}]	R _{ext} [kΩ]	
	Trim [kΩ]	Trim1 [kΩ]
105 to 108 (107 typically)	0	0
105	10	17
102	62	110
100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∞

Adjustment by means of an external voltage source Vext

For external output voltage adjustment in the range 85 to 105% of $V_{o nom}$ a voltage source V_{ext} (0 to 20 V) is required, connected to Trim or Trim1 (pin 5) and Vi–. The table below indicates typical values V_o versus V_{ext} . Applying a control voltage of 15 to 20 V will set the converter into the hiccup mode. Direct paralleling of the Trim pins of converters of the same type connected in parallel is feasible.

Table 8: V_o versus V_{ext} for $V_o = 85$ to 105% $V_{o nom}$; typical values ($V_{i nom}$, $I_o = 0.5 I_{o nom}$)

V o [% V _{o nom}]	Vex	_{tt} [V]
	Trim [V]	Trim 1 [V]
>105	0	0
102	1.8	1.5
100	2.5	2.5
95	4.3	4.25
90	6.2	6.2
85	8	8

Synchronization (W)

It is possible to synchronize the switching frequency of one or more converters to an external symmetrical clock signal. If this option is required, consult factory for full application details.

This logic input W can be used to synchronize the oscillator to an external frequency source. This signal is edge-triggered with TTL thresholds, and requires a source frequency of 490 to 540 kHz (duty cycle 10 to 90%). The external source frequency is internally divided by 2 to define the switching frequency for the converter. If unused, this pin can be connected to V1– (pin 2) or left open-circuit.

Reference Output (Ref)

The converter provides a stable 5 V (±0.1 V) reference signal on pin 7 (Ref). The output is protected by a 1 k Ω resistor. The signal may be used also in conjunction with the Trim input (pin 5) as a limited external voltage reference.

It is recommended to connect a filter capacitor (0.1 μ F) between Ref and Vi–, if Ref is used.

Shutdown

The outputs of the converters may be enabled or disabled by means of a logic signal (TTL, CMOS, etc.) applied to shut down (pin 8). If the shut down function is not required, then pin 8 should be left open-circuit:

Converter operating:	2.0 to 20 V
Converter disabled:	-10 to 0.7 V

Option i: Inhibit (Negative Shutdown Logic)

The output of the converter may be enabled or disabled by means of a logic signal (TTL, CMOS, etc.) applied to the inhibit pin 8. No output voltage overshoot will occur, when the converter is turned on. If the inhibit function is not required the inhibit (pin 8) should be connected to Vi– to enable the output (active low logic, fail safe). Voltage on pin 8:

Converter operating:	-10 V to 0.8 V
Converter disabled:	2.4 V to 20 V or left
	open-circuit

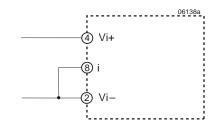


Fig. 13

If the inhibit is not used, the inhibit pin should be connected to Vi–.

Progr. Input Undervoltage Lockout PUL

A special feature of these converters is the accurate undervoltage lockout protection, which protects the converter (and the system) from large currents caused by operation at low voltages. This ensures easier start-up in distributed power systems.

Table 9: Turn on and turn off voltage

Model	Trigger level	Hysteresis	Unit
20IMX35	7 to 8	<0.5	V
40IMX35	14 to 15.5	<1	
70IMX35	31 to 34	<3	
110IMX35	42 to 50	<8	

The undervoltage lockout levels may be programmed by use of an external resistor R_{PUL} to increase the preset levels as indicated in the table below.

Table 10: Typical values for R_{PUL} and the respective lockout voltage for input voltage.

2011	MX35	401MX35		
R _{PUL} [kΩ]	<i>R</i> _{PUL} [kΩ] <i>V</i> _{i min} [V]		V _{i min} [V]	
∞	≤8	∞	≤15.5	
39	10	43	22	
19	12	16	26	
13	14	10	28	
9.1	16	0	32	

7011	MX35	110IMX35		
<i>R</i> _{PUL} [kΩ]	V _{i min} [V]	R _{PUL} [kΩ]	V _{i min} [V]	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	31	×	42	
270	40	270	50	
110	50	120	60	
80	55	51	75	



# Electromagnetic Compatibility (EMC)

A suppressor diode together with an input filter form an effective protection against high input transient voltages which

typically occur in many installations, but especially in batterydriven mobile applications.

## **Electromagnetic Immunity**

Table 11: Immunity type tests

Phenomenon	Standard	Class Level	Coupling mode 1	Value applied	Waveform	Source Imped.	Test procedure	In oper.	Per- ² form.
Electrostatic discharge	IEC/EN 61000-4-2	2	contact discharge (Trim pin open)	4000 V _p	1/50 ns	330 Ω	30 Ω10 positive and 10 negative	yes	В
to case		3	air discharge (Trim pin open)	8000 V _p			discharges		
Electromagnetic field	IEC/EN 61000-4-3	3 ³	antenna	10 V/m	AM 80% 1 kHz	n.a.	80 to 1000 MHz	yes	A
	ENV 50204	3	antenna	10 V/m	PM, 50% duty cycle, 200 Hz repetition frequ.	n.a.	900 MHz	yes	A
Electrical fast transients/burst	IEC/EN 61000-4-4	4	direct +i/-i	4000 V _p	bursts of 5/50ns 2.5/5 kHz over 15 ms, burst period 300 ms	50 Ω	60 s positive, 60 s negative transients per coupling mode	yes	В
Surges	IEC/EN 61000-4-5	34	+i/-i	2000 V _p	1.2/50 µs	2 Ω	5 pos. and 5 neg. surges	yes	В
	EN 50155:	A 5	+i/c, -i/c	1800 V _p	5/50 µs	100 Ω		yes	В
	2001	B 6	+i/c, -i/c	8400 V _p	0.05/0.1 µs	100 Ω		yes	В
RF Conducted immunity	IEC/EN 61000-4-6	3	+i/—i	10 VAC (140 dBμV)	AM modulated 80%, 1 kHz	50 Ω	0.15 to 80 MHz 150 Ω	yes	A

¹ i = input, o = output.

² A = normal operation, no deviation from specification, B = temporary deviation from specs. possible.

³ Corresponds to EN 50121-3-2:2000, table 9.1

⁴ External components required; see fig. 4

⁵ Corresponds to EN 50155:1995, waveform D

⁶ Corresponds to EN 50155:1995, waveform G

#### **Electromagnetic Emission**

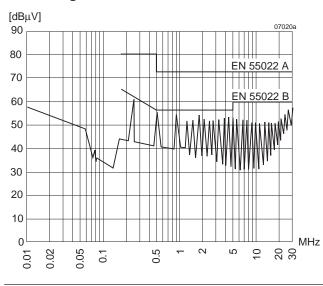
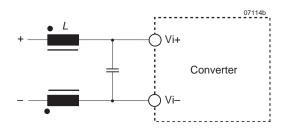



Fig. 14

Typical disturbance voltage (quasi-peak) at the input according to EN 55011/22, measured at V_{i nom} and I_{o nom}. Output leads 0.1 m, twisted (40IMX35D12D12-8).




#### **Radiated Emissions**

Radiated emission requirements according to EN 55011/ 55022, class B, can be achieved by adding an external common mode choke and for 201MX35 models an additional capacitor (4.7  $\mu$ F/ 50 V). The filter components should be

Table 12: Input filter components for EN 55011/55022, level B, radiated (30 to 1000 MHz)

Туре	Current compensated choke
20IMX35	Murata PLH1OA series 7003R6P02
40IMX35	Murata PLH1OA series 1612R1P02
70IMX35	Murata PLH1OA series 2911R2P02
110IMX35	Murata PLH1OA series 3711R0P02

placed as close as possible to the input of the converter; see figure below.





External circuitry to comply with EN 55011/55022, level B, radiated

## **Immunity to Environmental Conditions**

#### Table 13: Environmental testing

Test I	Method	Standard	Test Conditions		Status
Cab	Damp heat steady state	IEC/EN 60068-2-78 MIL-STD-810D sect. 507.2	Temperature: Relative humidity: Duration:	40 ± ² °C 93 ^{+2/-3} % 56 days	Converter not operating
Ea	Shock (half-sinusoidal)	IEC/EN 60068-2-27 ¹ MIL-STD-810D sect. 516.3	Acceleration amplitude: Bump duration: Number of bumps:	100 $g_n = 981 \text{ m/s}^2$ 6 ms 18 (3 each direction)	Converter operating
Eb	Bump (half-sinusoidal)	IEC/EN 60068-2-29 MIL-STD-810D sect. 516.3	Acceleration amplitude: Bump duration: Number of bumps:	40 $g_n$ = 392 m/s ² 6 ms 6000 (1000 each direction)	Converter operating
Fc	Vibration (sinusoidal)	IEC/EN 60068-2-6	Acceleration amplitude: Frequency (1 Oct/min): Test duration:	0.35 mm (10 to 60 Hz) 5 $g_n$ = 49 m/s ² (60 to 2000 Hz) 10 to 2000 Hz 7.5 h (2.5 h each axis)	Converter operating
Fn	Vibration broad-band random (digital control)	IEC/EN 60068-2-64	Acceleration spectral density: Frequency band: Acceleration magnitude: Test duration:	0.05 g _n ² /Hz 20 to 500 Hz 4.9 g _{n rms} 3 h (1 h each axis)	Converter operating
Kb	Salt mist, cyclic (sodium chloride NaCl solution)	IEC/EN 60068-2-52	Concentration: Duration: Storage: Storage duration: Number of cycles:	5% (30°C) 2 h per cycle 40°C, 93% rel. humidity 22 h per cycle 3	Converter not operating

¹ Covers also EN 50155/EN 61373 (Category 1, body mounted, Class B)



## Temperatures

Table 14: Temperature specifications, valid for air pressure of 800 to 1200 hPa (800 to 1200 mbar)

Tem	perature		Unit		
Char	acteristics	Conditions	min	max	
T _A	Ambient temperature	Operational ¹	-40 ²	85 ¹	°C
T _C	Case temperature		-40 ²	110	
Ts	Storage temperature	Non operational	-55 ²	110	

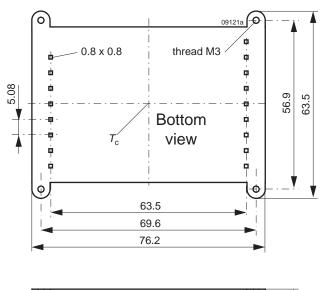
¹ See Thermal Considerations

² Start up at – 55 °C

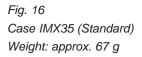
.

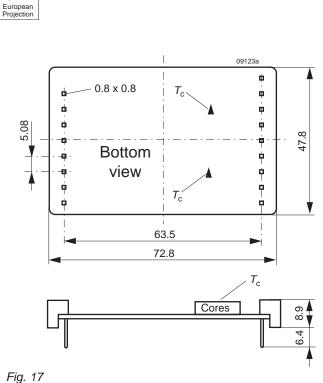
#### Reliability

Table 15: MTBF at nom. load


Model	Ground benign	Ground fixed		Ground mobile	Device hours ¹	Unit
	40 °C	40 °C	70 °C	50 °C		
40IMX35 (MIL-HDBK-217F, <i>T</i> _C )	336 000	141 000	86 000	110 000	396 000	h
110IMX35 (Bellcore, T _A )	1445 000	529 000	294 000	144 000		

 $\odot$ 


¹ The device hours are based upon the IMX35 series field failure rate recorded between 2000 and 2005


# **Mechanical Data**

Dimensions in mm.









Case IMX35 open frame (option Z) Weight: approx. 43 g



# Safety and Installation Instructions

#### **Pin allocation**

Table 16: Pin allocation				
Pin No.	Quadruple output			
1	PUL			
2	Vi–			
3	n.c.			
4	Vi+			
5	Trim or Trim1			
6	W			
7	Ref			
8	SD			
11	Vo3–			
12	Vo3+			
13	Vo2+			
14	Vo2–			
15	Vo1–			
16	Vo1+			
17	Vo4+			
18	Vo4–			
19	n.c.			

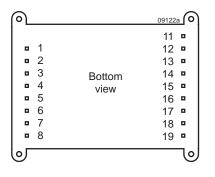



Fig. 18 Footprint. The holes in the PCB should have a diameter of 1.5 mm.

#### Installation Instructions

Installation of the converters must strictly follow the national safety regulations in compliance with the enclosure, mounting, creepage, clearance, casualty, markings, and segregation requirements of the end-use application.

Connection to the system shall be made via a printed circuit board with hole diameters of 1.5 mm for the pins.

The converters should be connected to a secondary circuit.

Do not open the converter.

Ensure that a converter failure (e.g., by an internal shortcircuit) does not result in a hazardous condition.

#### **Input Fuse**

To prevent excessive current flowing through the input supply line in case of a short-circuit in the converter, an external fuse should be installed in the non-earthed input line. We recommend a fast acting fuse specified in table 3.

#### **Standards and Approvals**

All converters are approved according to the standards UL 60950-1, CSA 60950-1, and IEC/EN 60950-1:2001.

The converters have been evaluated for:

- Building-in
- Basic insulation input to output, based on their maximum input voltage
- Pollution degree 2 (not option Z)
- Connecting the input to a secondary circuit, which is subject to a maximum transient rating of 1500 V.

The converters are subject to manufacturing surveillance in accordance with the above mentioned standards.

CB scheme is available (DE3-52559M3).

#### **Railway Applications**

To comply with Railway standards, all components are coated with a protective lacquer (except for option Z).

#### **Protection Degree**

The protection degree is IP 30 (not for option Z).

#### **Cleaning Agents**

In order to avoid possible damage, any penetration of cleaning fluids should be prevented, since the power supplies are not hermetically sealed.

However, the open-frame models (option Z) leave the factory unlacquered and may be cleaned and lacquered by the customer, for instance together with the motherboard. Contact Power-One for the type of cleaning agents.



#### Isolation

The electric strength test is performed in the factory as a routine test in accordance with EN 50116, EN 60950 and UL 60950 and should not be repeated in the field. Power-One will not honor any warranty claims resulting from electric strength field tests.

Table 17: Electric strength test voltages

Characteristic	Input to (outputs+case) 20/40IMX35 ¹	Input to (outputs+case) 70/110IMX35 ¹	Outputs to case all models ¹	Between outputs all models	Unit
Factory test >1 s Equivalent DC voltage	1.2 1.5	1.8 2.5	0.5 0.7	0.15 ² 0.2 ²	kVAC kVDC
Insulation resistance at 500 VDC	>100	>100	_	-	MΩ

¹ For open-frame models (option Z), only the insulation input to outputs is tested.

² The test voltage between outputs is not applied as routine test. For higher isolation between outputs, contact Power-One.

# Options

Table 18: List of options

Option	Function of option	Description
i	Inhibit: Negative shutdown logic	See Auxiliary Functions
Z	Open frame	See Mechanical Data
G ¹	RoHS compliant for all 6 substances	See Model Selection

¹ G is allways placed at the end of the part number.

NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.



# **EC Declaration of Conformity** We Power-One AG Ackerstrasse 56, CH-8610 Uster declare under our sole responsibility that IMX35 Series DC-DC converters carrying the CEmark are in conformity with the provisions of the Low Voltage Directive (LVD) 73/23/EEC of the European Communities. Conformity with the directives is presumed by conformity with the following harmonised standards: EN 61204:1995 (= IEC 61204:1993, modified) Low-voltage power supply devices, DC output - Performance characteristics and safety requirements • EN 60950-1:2001 (=IEC 60950-1:2001) Safety of information technology equipment. The installation instructions given in the corresponding data sheet describe correct installation leading to the presumption of conformity of the end product with the LVD. All IMX35 Series DC-DC converters are components, intended exclusively for inclusion within other equipment by an industrial assembly operation or by professional installers. They must not be operated as standalone products. Hence conformity with the Electromagnetic Compatibility Directive 89/336/EEC (EMC Directive) needs not to be declared. Nevertheless, guidance is provided in the data sheets on how conformity of the end product with EMC standards under the responsibility of the installer can be achieved, from which conformity with the EMC Directive can be presumed. Power-One AG Uster, 14 Nov. 2005 J. Milara R. Balden Johann Milavec Rolf Baldauf Vice-President Engineering Director Projects and IP